5 research outputs found

    An eHealth-Care Driven Perspective on 5G Networks and Infrastructure

    Get PDF
    This work describes the advancements that next generation mobile networks can bring to emergency services on the basis of a fully 5G enabled medical emergency response scenario. An ambulance service combining autonomous driving, advanced on-board patient monitoring, remote diagnosis and remote control from the hospital is introduced, allowing increased levels of care during patient transport and improved early diagnosis, thus enhancing patient survival rates. Furthermore, it is shown that such an ambulance service requires a variety of different traffic types that can only be supported concurrently and with guaranteed quality of service by a high-performance network fulfilling all 5G key performance indicators. The scenario described combines a multitude of aspects and applications enabled by 5G mobile communications, including autonomous driving, ultra-high definition video streaming, tactile remote interaction and continuous sensing, into a compelling showcase for a 5G enabled future. A centralized radio access 5G network with space division multiplexed optical fronthaul using analog radio-over-fiber and optical beamforming is analyzed, fully supporting SDN and NFV for advanced network slicing and quality of service guarantee.</p

    Energy efficient 850-nm VCSEL based optical transmitter and receiver link capable of 56 Gbit/s NRZ operation

    No full text
    Optical VCSEL-based links operating in on-off keying (OOK) modulation represent a robust energy-efficient solution for short-reach optical interconnects in datacenters. We report on the optical and electronic elements of such link and their integration into the transmitter (TR) and receiver (RX) assemblies. A single channel transceiver link capable of 40-56 Gbit/s OOK transmission over multimode fiber at record energy-efficiency of ~4.5 pJ/bit is demonstrated. VCSEL driver and receiver transimpedance amplifier (TIA) circuits capable of generating 80-100 Gbit/s error-free signals are characterized on a special test-board assembly. Real-time 56 Gbit/s transmission experiments of the complete link are done, resulting in bit-error ratios (BER) below standard Forward Error Correction (FEC) levels without equalization or signal processing
    corecore